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1 Introduction

The convergence of control systems and software engineering is one of the most profound trends in technology

today. Control engineers build on computing and communication technology to design robust, adaptive and

distributed control systems for operating plants with partially known nonlinear dynamics. Systems engineers

face the problem of designing and integrating large scale systems where networked embedded computing is

increasingly taking over the role of “universal system integrator”. Software engineers need to design and

build software that needs to satisfy requirements that are simultaneously physical and computational. This

trend drives the widespread adoption of model-based design techniques for computer-based systems. The

use of models on different levels of abstraction have been a fundamental approach in control and systems

engineering. Lately, model-based software engineering methods, such as OMG’s Model-Driven Architecture

(MDA) [13][7] have gained significant momentum in the software industry, as well. The confluence of these

factors has led to the emergence of model-driven engineering (MDE) that opens up the opportunity for the

fusion of traditionally isolated disciplines.

Model-Integrated Computing (MIC), one practical manifestation of the general MDE vision, is a power-

ful model-based design approach and tool suite centered on the specification and use of semantically-rich,
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domain-specific modeling languages (DSMLs) during the full system life-cycle [19]. Domain architects enjoy

increased productivity when designing and analyzing systems using DSMLs tailored to the concepts, relation-

ships, needs, and constraints of their particular domains. However, unlike “universal” modeling languages

such as UML [14], which is standardized and evolved by the OMG [12], industrial DSMLs are best designed

and maintained by the domain architects who employ them.

A necessary condition for the industrial adoption of DSMLs is the use of metaprogrammable tool suites

that enable the reuse of complex tools for modeling, model transformation, model management, model

analysis, and model integration over a wide range of domains. Today, industry managers are faced with a

confounding array of tools and metamodeling languages which support the creation and use of DSMLs. The

consequences of choosing one tool or metamodeling language over another are not immediately obvious. In

this chapter, we examine technical solutions for metaprogrammability and analyze the relationship between

metamodeling languages and metaprogrammable tool architectures. Specifically, we will provide a technical

comparison of three metamodeling languages: MetaGME, Ecore, and Microsoft’s Domain Model Definition

language. Note that this list is by no means exhaustive; other metamodeling languages not discussed

here include the Meta-Modelling Language (MML)[20] and those defined for The eXecutable Metamodeling

Facility (XMF) [27].

MetaGME is the native metamodeling language supported by the Generic Modeling Environment (GME)

[2], a graphical metaprogrammable modeling tool [4]. GME is developed by the Institute for Software

Integrated Systems (ISIS) of Vanderbilt University. MetaGME’s syntax is based on UML class diagrams

[14] with OCL constraints [17].

Ecore is similar to the EMOF flavor of the pending MOF 2 specification currently being revised by

OMG. It serves as the metamodeling language of the Eclipse Modeling Framework (EMF) [9]. Every Ecore

metamodel may be equivalently represented through an Ecore dialect of XMI [18] or as Java source code.

EMF was initially released in 2003 by IBM.

The Domain Model Definition (DMD1) language will be the metamodeling language supported by Mi-

crosoft’s forthcoming Visual Studio Domain-Specific Language Toolkit. This toolkit realizes the Software
1The DMD label is not standardized by Microsoft, but we adopt here for lack of a better short-hand name for Microsoft’s

forthcoming metamodeling language.
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Factories vision for model-based design [23]. DMD is currently still pre-release — our work in this paper is

based on the September 2005 beta of the DSL toolkit.

Metamodeling languages play a highly significant role in the metaprogrammable modeling tools, which

support them because they are used to create domain-specific modeling configurations of those tools. How-

ever, model-based design technology is rapidly evolving, and tool designers may need to support multiple

metamodeling languages side-by-side, change the metamodeling interface exposed by a tool suite, or oth-

erwise enable the portability of models between metamodeling languages. Recent work [22][21] has shown

that model-to-model transformations can enable the portability of models across tool suites; however, un-

derstanding the impact of the selection of a metamodeling language on the reusability of such a suite of

tools is also an important issue. We argue that the consequences of choosing one metamodeling language

over another are fairly minor, since all of the metamodeling languages support the same fundamental con-

cepts for DSML design. Consequently, model-to-model transformation approaches can aid in retrofitting a

metaprogrammable tool suite such that it supports a new metamodeling language.

This chapter is organized as follows: Section 2 defines metaprogramming, metaprogrammable tools,

and metaprogrammable tool suites. Section 3 compares the abstract syntax of the three metamodeling

languages briefly described above to establish their fundamental similarity. We also provide some analysis of

the trade-offs made when selecting one language over another in terms of the convenience afforded by each

language’s abstract syntax and the capabilities of the current supporting tools of each. Section 4 outlines

a set of procedures and tools which can enable the support of a new metamodeling language by an existing

metaprogrammable toolsuite. The methods described depend on knowledge of the deep similarities between

metamodeling languages established in Sect. 3. Section 5 presents our conclusion.

2 Modeling Tool Architectures and Metaprogrammability

This section defines metaprogramming, metaprogrammable tools, and metaprogrammable tool suites. Tra-

ditionally, metaprogramming implies the writing of programs that write or manipulate other programs (or

themselves) as their data. Metaprogramming allows developers to produce a larger amount of code and

increase productivity. Although the end purpose of metaprogramming in model-based design is still devel-
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oper productivity, the means is slightly different. The task of metaprogramming in model-based design is to

automatically configure and customize a class of generic modeling, model management, transformation, and

analysis tools for use in a domain-specific context.

The primary hurdle with the domain-specific approach is that building a new language and modeling

tool to support a narrowly-used niche domain (for example, a co-design environment specialized for a single

type of automobile electronic control unit) might be unjustifiably expensive. On the other hand, a general

modeling tool with “universal” modeling concepts and components would lack the primary advantage offered

by the domain-specific approach: dedicated, customized support for a wide variety of application domains.

The solution is to use a highly-configurable modeling tool which may be easily customized to support a

unique environment for any given application domain. These are known as metaprogrammable modeling

tools, because users must ‘program’ the tool itself before they can use it to build models. The chief virtue of

metaprogrammable tools is that they enable relatively quick and inexpensive development of domain-specific

modeling environments (DSME) – especially when the tool customizations themselves can be easily specified

through a model-based design process.

Experience with metaprogrammability indicates that metaprogrammable tools generally implement fol-

lowing core elements:

• A Metaprogramming Language that defines the core concepts and operations for customizing the

generic tool into a DSME. The role of the metaprogramming language is to dictate the configuration

of a generic tool to support modeling in a specific domain. Since all metaprogrammable modeling tools

need to perform similar tasks (i.e., store models, allow users to access and manipulate models, and

transform models into some useful product), we might expect that the metaprogramming languages

associated with different tools will have a common expressive capability in terms of entity-relationship

modeling. The primary differences between metaprogramming languages from different tools generally

result from the model presentation capabilities of the tools themselves.

• A Metamodeling Language (or metalanguage) used to model (at the minimum) DSML abstract

syntax, which expresses the language concepts, and relationships and well-formedness rules [17]. The

primary benefit metamodeling languages provide over metaprogramming languages is that metamodel-
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ing languages take a model-based approach to language specification – they operate at a higher level of

abstraction from the tool. Traditionally, tools relied solely on metaprogramming languages for DSME

specification. However, the community has come the realization that the interoperability of models

between metaprogrammable tools suites can most easily be accomplished by agreeing on a standard

metamodeling language which can abstract away the differences between various modeling tools. Con-

sequently, the idea of decoupling the metamodeling language from the underlying metaprogramming

concepts of the tool and adopting a standards-based metalanguage such as MOF [15] has come into

practice. Interestingly, while all modeling tools have settled on the entity-relationship paradigm for

expressing systems, there are a variety of different approaches to model presentation, broadly including:

– Full graphical - Users freely draw graphically complex entity-relationship models on a modeling

palette. Model elements can be moved about the palette and can be visualized using domain-

specific sprites, abstract forms, or even domain-appropriate animations.

– Restricted graphical - Users see graphical representations of the model compositional structure

(generally expressed as a tree-like containment hierarchy), but the visualization itself is not

domain-specific.

– Textual

The plurality of approaches to model presentation means that model presentation information is not

generally portable between modeling tools. Consequently, the metalanguages closest to being true in-

dustry standards, MOF and Ecore, standardize no first-class constructs specifically modeling concrete

syntax. Furthermore, XMI, the most widely-adopted model-XML serialization language, defines no el-

ements specifically for capturing presentation metadata. Tools which support domain-specific concrete

syntax as well as abstract syntax capture concrete syntax in the metaprogramming language or even

in a metamodeling language (as is the case with MetaGME) [4].

• A Mapping that overlays the DSML abstract syntax expressed using the metalanguage onto the

syntax of the metaprogramming language supported by the generic (metaprogrammable) tool. The

mapping process is generally referred to as metatransformation or metainterpretation.
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Formally stated, let MML be a metamodeling language, MPL be the metaprogramming language sup-

ported by the generic tool, and DSML be a domain-specific modeling language. Also, let the notation

L1AL2 denote the abstract syntax of L2 expressed using L1. The metatransformation can then be stated as

follows:

MMLTMPL : MMLADSML → MPLADSML (1.1)

Metaprogramming thus involves the following two steps:

1. Specify the DSML abstract syntax MMLADSML using a metamodel

2. Apply the metatransformation MMLTMPL to that metamodel

The resulting abstract syntax specification of DSML using MPL represents customization of the generic

tool to support modeling in DSML.

Of course, simple metaprogrammable modeling tools as described above do not provide the full range of

required capabilities for semantically-rich model-based design. These tools must be integrated with helper

tools, plug-ins, and languages to provide constraint management, model transformation, model interpreta-

tion, and other capabilities [5]. A constraint manager is responsible for enforcing the well-formedness rules

of DSMLs (and consequently must be metaprogrammable). Model transformers translate models of one sort

into models of another sort, or generate code from models. For example, model interpreters translate domain

models into ‘executable’ models in order to perform simulation, or into analysis input models for analysis

tools. In this sense, model interpreters may be said to assign the behavioral semantics of the supported

modeling language. The eXecutable Metamodelling Facility (XMF) provided by Xactium composes a set

of tool-supported languages to provide rich metamodeling capabilities capable of capturing the syntax and

semantics of modeling languages. This set includes an abstract syntax modeling facility which supports

a MOF-like language, a concrete syntax language, a constraint language, an action language for modeling

behavioral semantics, and a model transformation language [27].

In the remainder of this section, we describe the MIC suite of metaprogrammable tools: GME, UDM,

GReAT, and DESERT. We elucidate the role of metaprogramming and metamodeling languages in each of
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these tools.

Figure 1.1: MIC Metaprogrammable Tool Suite

2.1 Metaprogrammable Modeling Tool - GME

GME is the MIC metaprogrammable graphical modeling tool [2]. It includes a graphical model builder,

supports a variety of model persistence formats, and is supported by a suite of helper tools; its architecture

is further depicted in Figure 1.2. The Model builder component serves as the tool front-end which allows

modelers to perform standard CRUD (create, request, update, destroy) operations on model objects which

are stored GME’s model repository. The model builder provides access to the concepts, relationships,

composition principles, and representation formalisms of the supported modeling language. The model

repository is physically realized via a relational database. GME uses OCL as its constraint specification

language and includes a metaprogrammable plug-in for enforcing domain constraints.

The soul of GME, however, is its metaprogramming language, which is called GMeta. The semantics of

this language are implemented in the GMeta component of GME’s architecture as depicted in fig. 1.2. The

GMeta component provides a generic interface to the database used to implement GME’s model repository.

It implements the following GMeta language concepts: Folders, Models, Atoms, Sets, References, Connec-
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tions, ConnectionPoints, Attributes, Roles, and Aspect2. All of the model manipulation operations in the

GME model builder map to domain-generic macro manipulation operations on the objects in the GMeta

component. For example, an object creation operation in the model builder maps to creation of an instance

of one (or more) of the above concepts in the GMeta component of the model repository. Configuration and

customization of GME via metaprogramming accomplishes the following:

• It specifies the mapping of domain modeling concepts into GMeta concepts. For example, domain

relationships are specified as GMeta Connections.

• It specifies a suite of macro operations for model manipulation. For example, suppose we wrote a

metaprogram which configures GME to serve as an environment for modeling FSMs. We specify that

the State domain concept has a boolean attribute IsInitial which will specify whether a particular

state in an FSM is the initial state. Then, creating a state instance in the model builder might result

in the instantiation of a GMeta Atom and a GMeta Attribute in the GMeta component of the model

repository.

• It constrains the available model operations according to domain well-formedness rules. This means

that users of the language will not be able to specify domain models which defy the definitions of the

domain constructs as set forth in the metaprogram.

GME currently supports MetaGME as its native metamodeling language. MetaGME is based on stereo-

typed UML class diagrams with OCL constraints, and serves as a layer of abstraction on top of GMeta.

Users may metaprogram GME by specifying the abstract syntax of a DSML as a MetaGME stereotyped

class diagram. The stereotypes in MetaGME refer to the concepts of GMeta listed above. Metatransforma-

tion maps the metamodel into these lower-level metaprogramming constructs. Formally, metatransformation

in GME is a concretization of equation 1.1 as follows:

MetaGMETGMeta : MetaGMEADSML → GMetaADSML (1.2)

2W expand on these concepts in the next section.
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Note that this transformation is metacircular in the sense that MetaGME can also be realized as a DSML,

and GME can be metaprogrammed to provide a domain-specific modeling environment for metamodeling.

MetaGMETGMeta : MetaGMEAMetaGME → GMetaAMetaGME (1.3)

Figure 1.2: Modeling Tool Architecture: GME

2.2 Metaprogrammable Model Manipulation Management API - UDM

UDM, or Universal Data Model, is a tool framework and metaprogrammable API which can be configured

to provide domain-specific programmatic access to an underlying network of model objects independent of

the mechanism used to persist those model objects. UDM serves as a model access and manipulation layer,

forming the “backbone” that model editing, database, and generator tools require [8]. It interoperates with

and lends additional functionality to GME3. UDM uses UML class diagrams as its metamodeling language.

Metaprogramming UDM thus involves specification of a DSML using UML class diagrams. Furthermore, just

as GME internally represents domain models in its repository using the domain-generic GMeta constructs,

UDM internally represents domain models using domain-generic UML constructs. Although UDM provides

a generic UML-based API for accessing models, its chief virtue is to provide a domain-specific layer of
3GME actually supports several mechanisms for providing programmatic access to models, including the Builder Object

network (of which there are both C++ and Java versions). For the sake of brevity, we only discuss one.
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abstraction over the object models of various underlying back-end persistence technologies. UDM supports

multiple such back-ends as shown in 1.3.

Figure 1.3: Universal Data Model Framework

With the GMeta back-end, the model object network physically resides in GME’s relational internal

object database. Direct access to this database is accomplished through the GMeta domain-generic API.

With the XML back-end, the model object network resides in an XML file which may be manipulated

through the domain-generic DOM API. The generated UDM API for a DSML is a code-level realization of

the UML metamodel used to specify the abstract syntax of the DSML. This domain-specific API is a wrapper

facade for the domain-generic UML API, which in turn is a wrapper facade for the domain-generic API of

each supported underlying model persistence mechanism. Consequently, different metatransformations are

used to metaprogram UDM for each of the supported back-ends.

For example, the metatransformation for the GMeta back-end may be formalized as:

UMLTGMeta : UMLADSML → GMetaADSML (1.4)

It is often useful to construct a domain-specific UDM API which supports a DSML originally specified
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using MetaGME rather than UDM’s implementation of UML. Consequently, the UDM set of tools includes

the MetaGME2UML model-to-model transformation:

MetaGMETUML : MetaGMEADSML → UMLADSML (1.5)

Clearly, UDM was designed with an eye toward the manipulation of models irrespective of the platform

on which they were developed or the mechanism used to persist them. Because of its relationship with UML,

UDM even supports XMI [18] import and export of models and metamodels.

2.3 Metaprogrammable Design Space Exploration - DESERT

When large-scale systems are constructed, in the early design phases it is often unclear what implementation

choices could be used in order to achieve the required performance. In embedded systems, frequently multiple

implementations are available for components (e.g. software on a general purpose processor, software on a

DSP, FPGA, or an ASIC), and it is not obvious how to make a choice, if the number of components is large.

Another metaprogrammable MIC tool can assist in this process. This tool is called DESERT (for Design

Space Exploration Tool). DESERT expects that the DSML used allows the expression of alternatives for

components (the design space) in a complex model.

Once a design space is modeled, one can attach applicability conditions to the design alternatives. These

conditions are symbolic logical expressions that describe when a particular alternative is to be chosen.

Conditions could also link alternatives in different components via implication. One example for this feature

is: “if alternative A is chosen in component C1, then alternative X must be chosen in component C2”. During

the design process, engineers want to evaluate alternative designs, which are constrained by high-level design

parameters like latency, jitter, power consumption, etc. Note that these parameters can also be expressed

as symbolic logic expressions. DESERT provides an environment in which the design space can be pruned

and alternatives rapidly generated and evaluated.

DESERT consumes two types of models: component models (which are abstract models of simple com-

ponents) and design space models (which contain alternatives). Note that for design space exploration the

internals of simple components are not interesting, only a ”skeleton” of these components is needed. The
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design space models reference these skeletons. DESERT uses a symbolic encoding technique to represent the

design space that is based on Ordered Binary Decision Diagrams (OBDD-s) [6]. OBDD-s are also used to

represent applicability constraints, as well as design parameters. The conversion to OBDD-s happens in an

encoding module.

Once the symbolic representation is constructed, the designer can select which design parameters to apply

to the design space and thus “prune away” unsuitable choices and alternatives. This pruning is controlled

by the designer, but it is done on the symbolic representation: the OBDD structures. Once the pruning is

finished, the designer is left with 0, 1, or more than one designs. 0 means that no combination of choices

could satisfy the design parameters, 1 means a single solution is available, and more than one means multiple

alternatives are available that cannot be further pruned based on the available information. This latter case

often means that other methods must be used to evaluate the alternatives, e.g. simulation. The result of

the pruning is in symbolic form, but it can be easily decoded and one (or more) appropriate (hierarchical)

model structure reconstructed from the result.

DESERT is metaprogrammable as it can be configured to work with various DSML-s (however all of them

should be capable of representing alternatives and constraints). The metaprogramming here happens in two

stages: one for the model skeleton generation, and the other one for the model reconstruction. DESERT has

been used to implement domain-specific design space exploration tools for embedded control systems and

embedded signal processing systems.

2.4 Metaprogrammable Model Transformations - GReAT

The Graph Rewriting And Transformation language (GReAT) is the MIC model-to-model transformation

language[1][11]. GReAT supports the development of graphical language semantic translators using graph

transformations. These translators can convert models of one domain into models of another domain. GReAT

transformations are actually graphically-expressed transformation algorithms consisting of partially-ordered

sets of primitive transformation rules. To express these algorithms, GReAT has three sub-languages: one for

model instance pattern specification, one for graph transformation, and one for flow control. The GReAT

execution engine takes as input a source domain metamodel, a destination domain metamodel, a set of
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mapping rules, and an input domain model, and then executes the mapping rules on the input domain

model to generate an output domain model.

Each mapping rule is specified using model instance pattern graphs. These graphs are defined using

associated instances of the modeling constructs defined in the source and destination metamodels. Each

instance in a pattern graph can play one of the following three roles:

• Bind: Match objects in the graph.

• Delete: Match objects in the graph and then delete them from the graph.

• New: Create new objects provided all of the objects marked Bind or Delete in the pattern graph match

successfully.

The execution of a primitive rule involves matching each of its constituent pattern objects having the roles

Bind or Delete with objects in the input and output domain model. If the pattern matching is successful,

then for each match the pattern objects marked Delete are deleted and then the objects marked New are

created. The execution of a rule can also be constrained or augmented by Guards and AttributeMappings

which are specified using a textual scripting language.

GReAT’s third sub-language governs control flow. During execution, the flow of control can change from

one potentially-executable rule to another based on the patterns matched (or not matched) in a rule. Flow

control allows for conditional processing of input graphs. Furthermore, a graph transformation’s efficiency

may be increased by passing bindings from one rule to another along input and output ports to lessen the

search space on a graph.

Ultimately, GReAT transformation models are used to generate C++ code which uses automatically-

generated domain-specific UDM APIs for the source and destination metamodels to programmatically exe-

cute model-to-model transformations. Consequently, GReAT inherits its metaprogrammability from UDM.

The source and destination metamodels accepted by GReAT are expressed using UMD-style UML class

diagrams.

Formally stated, let SRC and DST be respectably the source and destination metamodels of GReAT

Transformation SRCTDST , and let IN and OUT be arbitrary input and output domain models expressed
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using the languages defined by SRC and DST . Then, assuming that the GMeta back-end is always used

for persistent model storage, any execution of SRCTDST may be formalized as the following series of trans-

formations:

INTOUT : ((((GMetaAIN → UMLAIN ) → SRCAIN ) (1.6)

→ DST AOUT ) → UMLAOUT ) → GMetaAOUT

To summarize, the MIC metaprogrammable tool suite allows users to:

• Specify a domain-specific modeling language, include a concrete and abstract syntax and domain

constraints using GME and MetaGME

• Build system models using the metamodeled DSML and verify that the models do not violate the

domain constraints

• Construct model interpreters to parse and analyze the system models using UDM

• Transform the system models of into models expressed using a different DSML using GReAT; a spe-

cialized case of this is generating code directly from models to begin implementing the system

• Formally express the semantics of the DSML by mapping it onto another modeling language that

expresses a formal model of comutation using GReAT

• Perform design-space exploration on the modeled system using DESERT.

• Serialize the models to or import models from XMI using UDM

The MIC toolsuite supports full-featured, semantically rich model-based design. Furthermore, we note that

it is a framework which already utilizes multiple metamodeling languages mediated by a model-to-model

transformation: MetaGME and UDM UML mediated by the MetaGME2UML transformation.
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3 A Comparison of Metamodeling Languages

This section provides a brief overview of three metamodeling languages: MetaGME, Ecore, and Microsoft’s

Domain Model Designer (DMD) language. We compare these languages to draw out the close kinships and

similar expressive power they share via their common application of UML-like Object-Oriented principles to

abstract syntax modeling. We phrase their differences in terms of trade-offs for selecting one language over

another.

We discuss how each of these languages captures in some way a common core set of metamodeling

constructs derived from UML[14]:

• Classes are types whose instances have identity, state, and an interface. They are used to specify the

concepts of a modeling language. The state of a class is expressed by its attributes and its interface is

defined by the associations in which it participates. Class definitions may be extended through the use

of inheritance. Some languages support multiple inheritance; some support only single inheritance.

• Associations describe relationships between classes, including composition. Associations may be

binary or n-ary, and may include attributes or not, depending on the language.

• Data Types are non-instantiable types with no object identity, such as primitive types and enumer-

ations, which are used to type attributes. All three metamodeling languages we consider support a

common core set of primitive data types, and some also support additional data types. The common

set includes strings, integers, doubles, booleans, and enumerations.

3.1 MetaGME

MetaGME is the metamodeling language for the Generic Modeling Environment[4], which was discussed

at length in Section 2. MetaGME is a graphical language, and its concrete syntax is derived from UML

class diagrams augmented with UML class stereotypes. Figure 1.4 is a UML class diagram which captures

a simplified metamodel for MetaGME.

FCO and its subtypes capture the class concept (multiple inheritance is allowed). Connections strongly

resemble UML association classes – they may define binary stateful connections. MetaGME provides only the
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Figure 1.4: Simplified Version of the MetaGME Metamodel

common core set of data types (strings, integers, doubles, booleans, and enumerations) for typing attributes

in metamodels. Users can capture domain constraints directly in a MetaGME metamodel using OCL, and

these constraints will be parsed, interpreter, and enforced by the GME Constraint Manager plug-in.

MetaGME allows users to model the concrete syntax, abstract syntax, and syntactic mapping of a DSML

all in the same metamodel. Users can tailor the appearance of each association using the attributes of the

Connection class, and they can specify icons for language concepts using the attributes of FCO and its

descendants. Furthermore, the MetaGME class stereotypes allow users to specify another element of DSML

concrete syntax – the concepts represented by the stereotypes have been refined to support the inclusion of

commonly-used graphical modeling idioms or design patterns in a DSML, which are automatically supported

by GME. These stereotypes are defined as follows[10]:

• FCOs (First-Class Objects) are classes which must be abstract but can serve as the base type of a class

of any other stereotype in an relationship. For example, Atoms may only inherit from other Atoms

and FCOs, but a particular FCO might serve as the base type of both Atoms and Models.

• Models are composite classes. An attribute on the Containment connection allows users to specify
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whether a given component type is graphically exposed by its containing Model type as a port.

• Atoms are elementary, non-composite classes.

• Sets are classes which group other classes together using a special meta-level relationship which captures

the semantics of UML non-composite aggregation.

• References are classes that refer (through a special meta-level relationship) to other classes.

• Connections are analogous to UML association classes.

• Aspects are classes which group other classes together (through a special meta-level relationship) into

logical visibility partitions to present different views of a model.

GME provides special default visualizations for languages that use various patterns of these stereotypes.

For example, the default visualization for the Modular Interconnect pattern appears in Figure 1.5. The

metamodel fragment use to specify this visualization appears in Figure 1.6, where the Port class is composed

into the Module class as a port. This visualization could be further customized by specifying icons for

Module and Port and tailoring the appearance of PortConnection in the metamodel.

Finally, MetaGME provides robust support for metamodel composition. The GME tool itself allows the

importation of one model into into another, and MetaGME includes a special set of “class equivalence” op-

erators for specifying the join-points of the composed metamodels. It also defines two additional inheritance

operators to aid in class reuse: implementation inheritance and interface inheritance[3]. Implementation

inheritance allows a derived class to inherit only the attributes and component classes of its base type, while

interface inheritance allows a derived class to inherit only the non-composition associations of its base type.

Figure 1.5: Modular Interconnected in GME
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Figure 1.6: Metamodel Fragment Specifying Modular Interconnection

3.2 Ecore

Ecore is the metamodeling language for the Eclipse Modeling Framework[9]. The domain-specific modeling

environments built using EMF run as plug-ins for the Eclipse platform. The EMF toolsuite includes the

following tools:

• The Ecore language for specifying the abstract syntax of domain-specific modeling languages. The

framework supports import and export with an Ecore-flavored dialect of XMI (it can also import

standard MOF XMI).

• EMF.Edit, which includes a domain-generic set of classes used to construct domain-specific modeling

environments

• EMF.Codegen, the metatranslator which renders a DSME and a domain-specific model CRUD API

from an Ecore metamodel

• A domain-generic API for accessing and manipulating EMF models

The DSMEs produced by EMF “out of the box” all share a domain-generic hierarchy-based tree visual-

ization, and EMF does not provide tool support for modeling concrete syntax. Complicated domain-specific

visualizations can be created by extending the generated DSME or by hand-coding an editor using the

Eclipse Graphical Editing Framework (GEF). EMF lacks native tool support for modeling domain con-

straints, model migration, and multi-aspect (or multi-view) modeling. It is possible to perform metamodel

composition, however, by importing one metamodel into another. Although it is not possible to capture

domain constraints in an Ecore metamodel, it is possible to hand-weave constraints into the Java code

generated from a metamodel using a Java-based OCL library developed at Kent University[25].
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The Ecore metamodeling language itself strongly resembles the EMOF flavor of the MOF 2.0 specification

[16]. However, EMF takes a more bottom-up, code-centric, and Java-specific view of modeling than is

reflected in the MOF standard, which results in a few simplifications in Ecore. Ecore does not support class

nesting or a first-class association construct, but it does support multiple inheritance4. A simplified UML

class diagram for the Ecore metamodel (as it relates to domain-specific modeling) is provided in figure 1.75.

Figure 1.7: Simplified Version of the Ecore Metamodel

Because Ecore lacks a first-class association construct, association is expressed using references. Each

class forming one end of a logical association may have a reference to the class which forms the other end of

the logical association. References may be used to represent both symmetric and asymmetric association: in

the symmetric case, each end class possesses a reference to the other end class. In asymmetric association,

only one of the end classes possesses a reference to the other end class. Ecore’s representation of associations

is sufficiently expressive to capture the information relevant to DSML design: class relation, association

roles, composition, and navigability. Clearly, however, Ecore cannot represent associations with state. This

certainly makes many modeling languages more tedious to define, but does not decrease the relative expressive

power of the Ecore. Every association with attributes can be modeled as two associations which link to a

Class with the same attributes.
4When an Ecore class with multiple base types is serialized to Java, the corresponding class extends one of those base classes

and implements the others as mix-in interfaces.
5The Ecore metamodeling constructs are all more properly named with ‘E’ preceding the construct title (for example,

“EClass” instead of “Class”). We omit these preceding ‘E’-s.
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Through its close relationship with Java, Ecore enables a vast array of data types. In addition to all of

the usual primitive types, Ecore allows bytes, shorts, and in general any Java class to be wrapped as a data

type. Many of these additional types, such as collections, structures, and arbitrary classes, are of limited

use in the context of graphical DSMLs because of the difficulty of providing a simple graphical interface for

setting the values of attributes with complex types. For the most part, these only come in to play when

using Ecore itself as a DSML for defining logical data models or database schemas.

3.3 Microsoft Domain Model Designer

Microsoft DMD is part of the Microsoft Domain-Specific Languages toolsuite[26]. This new toolsuite will

realize the Software Factories vision of a workbench for creating, editing, visualizing, and using domain-

specific data for automating the Windows-based enterprise software development process. The domain-

specific modeling environments produced by MS DSL plug in to Visual Studio. For the sake of clarity, we

should point out that with its new tool, Microsoft has introduced new terminology for talking about familiar

domain-specific modeling concepts:

• Domain Model: a metamodel

• Designer: a domain-specific modeling environment

• Designer Definition: an XML-based metaprogramming specification for the DSL tool suite which

includes concrete syntax and syntactic mapping information

Currently, the metaprogrammable DSL toolsuite consists of the following major components:

• The Domain Model Designer metalanguage/tool, which is used to formulate DSL abstract syntax

• The Designer Definition language, which is used to specify the DSL concrete syntax, and some primitive

language constraints

• A metatranslator, which generates from a domain model and a designer definition a designer and a

domain-specific API for model access and manipulation

• The Meta Data Facility (MDF) API, which provides generic CRUD access to in-memory model storage
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• A tool for creating template-based model parsers with embedded C# scripts which may be used for

code generation

Because of the current immaturity of this framework, many supporting tools remain unimplemented.

Microsoft eventually plans to provide tool support DSL constraint specification, model migration, language

composition, and multi-aspect (or multi-view) modeling.

Although Microsoft provides no explicit meta-metamodel, it is easy to derive one from experimentation

with their tools. We provide a simplified visualization of this meta-metamodel using a UML class diagram

in figure 1.8.

Figure 1.8: Simplified Version of the Microsoft Domain Model Designer Metamodel

Notice that the language does not allow multiple inheritance, but does include the notion of stateful

associations (Relationships). These Relationships come in two varieties; Reference Relationships merely

denote association, while Embedding Relationships denote composition. DMD also captures a variety of

data types, including the standard set of primitive datatypes, longs, DateTimes, and GUIDs. As stated

above, the Microsoft DSL tools currently do not provide a modeling interface for capture concrete syntax –

that is done in XML through a designer definition.
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3.4 Language Differentiators

Recall that in Section 2 we stated that the role of the metamodeling language is two-fold: it must express the

concepts and relationships of the modeled domain and it must allow users to dictate modeling-tool specific

functionality. We have demonstrated that all three of the languages have similar expressive power for

defining the abstract syntax of DSMLs because they all reuse a common core set of metamodeling constructs

derived from UML class diagrams. The primary differentiators of the languages are the mechanisms which

they expose at the metamodeling level for specifying concrete syntax, the robustness and focus of their

respective supporting tool suites (GME, EMF, and MS DSL), and support for special language features such

as constraint specification and metamodel composition.

4 Relating Metamodeling Languages and Metaprogrammable Tools

In this section we outline the tools and proceedures which may be used to support another metamodeling

language alongside the native metamodeling language of a metaprogrammable tool suite. Our technique

depends on model-to-model transformation. We use the the MIC tool suite, the UDM framwork [8], and our

previous work of integrating a MOF metamodeling environment into GME as an illustrative examples and

proofs-of-concept [24].

In Section 3, we stated that the primary differentiator between two metamodeling languages is not their

expressive power for defining DSML abstract syntax. Indeed, for the sole purpose of modeling DSMLs,

metamodeling languages are differentiated mainly by the support they provide for specifying tool-specific

information such as concrete syntax. Consequently, the primary issue when adapting a metaprogrammable

tool suite to support a new metamodeling language is merely expressing this tool-specific information in the

new language. There is no modeling language whose abstract syntax can be expressed in one of MetaGME,

Ecore, or MS DMD and not in both of the other two.

Generalizing from Figure 1.2, we see that metaprogrammable modeling frameworks expose three interfaces

where users are exposed to the concepts which compose the metamodeling language supported by the tool:

the metaprogramming interface, the model persistence interface, and the domain-generic model CRUD API.
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4.1 Example: UDM

In the context of the MIC tool suite, the UDM framework described in Section 2 demonstrates the use of

model-to-model transformation to enable GME to provide a model access and manipulation API based on a

different metamodeling language (UDM UML) than the one it natively supports (MetaGME). Furthermore,

recall that UDM incorporates the capability to export models into a variety of different formats, including

the GME binary format and flat files of XMI (similar to those exported by EMF). UDM accomplishes

this through the use of a series of model-to-model translations, including MetaGME2UML and a series of

translators between the in-memory UDM UML model representation and the various supported back-ends

(Figure 1.3). Data abstraction layers such as UDM are key enabling technologies for model portability across

metamodeling languages. However, no tool currently in the UDM framework is capable of metaprogramming

GME to support a domain-specific modeling environment.

4.2 Example: GME-MOF

GME-MOF is an alternative MOF-based metamodeling environment for GME. It allows users to build

metamodels to metaprogram GME using MOF [24]. Noting that MOF itself is merely a DSML for defining

metamodels, we used a bootstrapping process to implement MOF for GME. Since MOF is specified meta-

circularly using the same set of object-oriented metamodeling constructs inherited from UML which form

the core of MetaGME, MetaGME possesses sufficient expressive power to fully model MOF. Accordingly,

we bootstrapped our MOF implementation by modeling MOF using MetaGME’s constructs and creating a

MOF DSML for GME.

MOF standardizes no method for specifying language concrete syntax, but model visualization is a

key element of the GME modeling experience. So, we needed to find a natural way to allow MOF to

express the visualization configurations realizable by GME. We accomplished this by augmenting MOF

classes and associations with a set of attributes mapping each MOF class onto a MetaGME stereotype

(e.g., FCO or Atom) and each association onto either a MetaGME Connection, set membership relationship,

or reference/referent relationship. Additional attributes allow users to specify icons for DSML language
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constructs and tailor connection visualizations6.

Next, we needed to implement the metatransformation MMLTMPL defined in equation 1.1 to transform

MOF metamodels into valid metaprogramming configurations of GME. Because MetaGME by design al-

ready reflects the full range of configurations which can be realized by GME (including model visualization

configurations), the easiest way to build a translation tool is by defining a model-to-model transformation

algorithm from MOF-specified metamodels into MetaGME-specified metamodels, then reusing the meta-

transformer built for MetaGME. Such a metamodel transformation tool may be specified quite naturally

due to the fundamental similarity of MetaGME and MOF. The Graph Rewriting and Transformation lan-

guage, GReAT [1][11], was the natural choice for implementing the metamodel translation algorithm.

The shaded components in Figure 1.9 represent the new facilities required to implement MOF for GME:

MetaGMEMMMOF is the MetaGME-specified MOF model and T2 is the MOF2MetaGME transformation

algorithm from MOF-specified metamodels to MetaGME-specified metamodels. T1 is MetaGME’s meta-

interpreter, the translator which generates GME configuration files from metamodels. These configuration

files customize GME’s graphical model builder, constraint manager, and model database to support the

modeled DSME. Notice how our approach allows us to reuse T1 in the process of converting MOF MMDSML

(a MOF-specified metamodel of some DSML) into a valid metaprogramming configuration for GME.

So, we can concretize equation 1.1 for GME-MOF:

MOF TGMeta : MOF ADSML → MetaGMEADSML → GMetaADSML (1.7)

Generalizing from GME-MOF, we can see how a layered approach combined with model-to-model trans-

formation can enable the reuse the existing metamodeling infrastructure of a metaprogrammable modeling

tool in supporting a new metamodeling language. However, because the modeling community has not settled

on any method for porting model visualization information across tools, tool developers must find ways of

exposing an interface for DSME visualization configuration in each new metamodeling environment to be

supported.
6Because all of this information is captured through attributes, it could also have been captured using the MOF Tag

construct. However, this would have been an extremely tedious solution for users, who would need to create tags to specify the

visualization of every element in a metamodel.
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Figure 1.9: Building the MOF-Based Metamodeling Environment

5 Conclusion

Metaprogrammable modeling tools require metamodeling languages which are expressive enough both to

model DSML abstract syntax and to address tool-specific concerns such as concrete syntax. We have defined

metaprogrammability, metamodeling, and metaprogrammable toolsuites. Furthermore, we have examined

three metamodeling languages and shown that these languages have very similar expressive power for DSML

abstract syntax specification. Essentially, DSML abstract syntax is tool-agnostic, which means that it is pos-

sible to build equivalent DSMLs incorporating the same domain concepts and addressing the same concerns

using different metamodeling languages in different metaprogrammable modeling tools. This implies that

the basis for selecting a model-based design tool suite should not be the metamodeling language supported

by the tools — it should be the capabilities of the tools themselves. Furthermore, a metaprogrammable tool

suite can be boot-strapped to support alternative metamodeling languages through a layered approach which

combines the use of metamodeling and model-to-model transformation. This boot-strapping process merely

implements new metamodeling languages as layers of abstraction above the native metamodeling language

supported by the tool. One of the chief virtues of this approach is that it does not break compatibility

with legacy DSMLs and tools which depend on the old metamodeling environment. Another virtue is that

it enables the possibility of designing supporting all of the metamodeling languages side-by-side on a single
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tool and easily exporting metamodels from one language to another using a common data abstraction layer.
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